9 research outputs found

    Data from: Clonal diversity impacts coral cover in Acropora cervicornis thickets: potential relationships between density, growth and polymorphisms

    No full text
    As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter‐ and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high‐ and low‐density aggregations of the threatened coral Acropora cervicornisin the Caribbean. We find that high‐density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet–ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density‐dependent factor that may impact traits important for the structure and function of coral reefs

    Shift from coral to macroalgae dominance on a volcanically acidified reef

    No full text
    Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants2, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals3. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state4, 5. This study provides field evidence that acidification can lead to macroalgae dominance on reefs

    Adhesives with nanoparticles

    No full text
    © Springer International Publishing AG, part of Springer Nature 2018. All rights are reserved. The increased commercial availability and the reduced prices of nanoparticles are leading to their incorporation in polymers and structural adhesives. This chapter outlines the principal types of nanoparticles, and the methods that may be used to disperse the particles in a polymer matrix. It discusses how nanoparticles can alter the mechanical properties (e.g., stiffness), electrical properties (e.g., conductivity), functional properties (e.g., permeability, glass transition temperature), and fracture performance of thermoset polymers. The effect of nanoparticles on joint performance is also discussed
    corecore